Prof. Dr. Martin Hartmann

FAU Erlangen-Nürnberg / Erlangen Catalysis Resource Center , insbes. Energiespeicherung - thermische Energiespeicher

Der Schwerpunkt der Forschungsarbeiten liegen im Bereich der Verwendung mikro- und mesoporöser (hierarchischer) Materialien in der heterogenen Katalyse und der Stofftrennung durch Adsorption. Die Anwendung moderner spektroskopischer Methoden zur Material- und Prozesscharakterisierung (u.a. Operando-NMR-, ESR-Spektroskopie und IR-Spektroskopie) sind ebenfalls wichtiger Bestandteil der Forschung. Weiterhin wird sich mit der Bewertung von Prozessen zur Herstellung von Funktionsmaterialien sowie zur Umwandlung von Biomasse in verschiedene Wertprodukte mittels „Life Cycle Assessment“ befasst.

  • Synthese und Modifikation von mikro- und mesoporösen Materialien
  • Festkörper-, NMR- und ESR-Spektroskopie
  • Heterogene Katalyse
  • Immobilisierung von Enzymen auf mesoporösen Trägern für die Biokatalyse
  • Stofftrennung durch selektive Adsorption
  • Funktionale Materialien für Energiespeicherung und -umwandlung
  • Wasserstoffspeicherung mit porösen Koordinationspolymeren
  • Kontrollierte Freisetzung von Wirkstoffen aus porösen Materialien
  • Life Cycle Assessment (LCA) von chemischen Prozessen
  • Photothermal CO2 conversion using Cu/ZnO/Al2O3 coated on ceramic foams
  • U Projekt (Horizon) Novel metal-organic framework adsorbents for efficient storage of hydrogen
  • Carbon Capture with MOFs
  • Development of a catalytic system for mediation of fugitive methane emissions

First purpose-built gravimetric sorption analyzers

The group has recently installed the first purpose-built gravimetric sorption analyzers for advanced carbon capture conditions. In most gas phase carbon capture applications such as point-source and direct air capture, CO2 often competes with other chemical species at adsorbent sites, especially water vapor. The new DVS Carbon range enables the measurement of CO2 uptake in real life conditions, controlling both temperature and humidity at a broad range of CO2 concentrations, from flue gas capture to direct air capture. The new instrument will be employed in a recently acquired project on the development of novel adsorbents based on metal organic frameworks for direct air capture at different temperatures from 5 °C to 60 °C and humidity levels up to 85 %. Direct air capture (DAC) is an ambitious initiative to capture CO2 from the ambient air. This endeavor is challenging due to the low concentration of carbon dioxide in the atmosphere, around 430 ppm. Adsorbents functionalized with amines are promising for this application due to their high affinity for carbon dioxide. Functionalizing amine groups or impregnating amines on various porous supports helps to mitigate issues such as accessibility, degradation, and vaporization. The influence of water is particularly important, as its presence can reduce or even enhance the capacity for CO2. 

The instruments are a custom-built symmetric microbalance that measures microgram changes in sample weight at a resolution of 0.01 μg. Temperature control ensures long-term stability, under dry and humid conditions. An advanced mixing system and calibrated mass flow controllers enable the setup to generate accurate concentrations of CO2 and humidity. Thanks to a precisely tuned temperature enclosure, heated water reservoirs, and calibrated sensors, accurate high relative humidity is achievable in the enclosure operating temperature range. An extended range of reduced relative hu is accessible using local heating up to 300 °C. A wide range of CO2 concentrations may be generated by mixing pure CO2 (or diluted carbon dioxide) and an inert carrier gas. The employed speed-of-sound sensor affords accurate measurements with CO2 concentrations up to 100 vol%, and an increased resolution below 50%. A non-dispersive infrared (NDIR) sensor is installed for measuring CO2 down to 50 ppm.