EU-Projekt: i³upgrade
Das Projekt i3upgrade zielt auf die intelligente und integrierte Aufwertung von Kohlenstoffquellen aus der Stahlindustrie durch wasserstoffintensivierte Synthesen ab. Im Gegensatz zu etablierten Syntheseverfahren ist das Ziel in diesem Projekt die direkte Methan- und Methanolsynthese in einem Stahlwerk unter dynamischen und transienten Bedingungen, wobei diese Synthesen mit einer zukunftsweisenden Regelungsstrategie betrieben werden. Eine agentenbasierte Modellierung demonstriert die Möglichkeiten zur Reduzierung von CO2-Emissionen in Stahlwerken im Rahmen sich abzeichnender volatiler Märkte. Der finale Machbarkeitsnachweis der neuen Regelungsstrategien wird sowohl mit realen abgefüllten Gasen aus dem Stahlwerk als auch mit einer komplexen Gasmatrix aus einem bestehenden Vergaser durchgeführt.
i3upgrade aims at the intelligent and integrated upgrade of carbon sources in steel industries through hydrogen intensified synthesis processes and advanced process control technologies. The i3upgrade approach will in particular:
- provide new flexible reactor concepts for the upgrade of coal-derived gases with varying composition and gas quality to methane and methanol
- optimize operation schemes by means of innovative advanced process control technologies
- enable CO2 savings through the integration of renewable hydrogen from volatile power sources
In accordance to TGC2 priority 1.3 “Innovative energy conversion cycles to increase revenue streams from coal power generation or steel industry while reducing carbon footprint” the consortium will apply these key innovations to an integrated steel works plant.
The upgraded carbonaceous streams partly substitute fossil fuels for the energy supply. In contrast to established synthesis processes, i3upgrade targets direct methanation and methanol synthesis of by-product gases in integrated steel works under transient conditions and with an addition of renewable hydrogen. Based on a detailed characterization of feasible operation windows, these syntheses will use advanced control strategies to address dynamic constraints of the integrated steelwork processes and of electricity grid services. Based on steel work process big-data analysis, the final proof-of-concept of the new control strategies will be done experimentally with bottled gases from the real converter and blast furnace plants as well as with a complex gas matrix from an existing coal gasifier.
A symposium of eight institutions is involved in the research activities. Research within FAU is carried out at the Chair of Energy Process Engineering (EVT) and Chair of Chemical Reaction Technology (CRT).
Project Funding:
This project has received funding from the Research Fund for Coal and Steel under grant agreement No 8006598.
Term: 01.06.2018 – 30.11.2021
Zurück zu: Forschung/Energiespeicher